MAINTENANCE PROGRAMME - PART M COMPLIANCE LIST

This list must be completed and enclosed with application.

<table>
<thead>
<tr>
<th>Maintenance programme</th>
<th>Maintenance programme reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover page</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>List of effective pages</td>
<td></td>
</tr>
<tr>
<td>Log of revision</td>
<td></td>
</tr>
<tr>
<td>Distribution list</td>
<td></td>
</tr>
<tr>
<td>Revision notice</td>
<td></td>
</tr>
</tbody>
</table>

Decision No 2003/19/RM
Appendix I to AMC M.A.302 and AMC M.B.301 (b) Content of the maintenance programme

<table>
<thead>
<tr>
<th>MP reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>General requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The maintenance programme should contain the following basic information.</td>
</tr>
<tr>
<td>1.1.1</td>
<td>The type/model and registration number of the aircraft, engines and, where applicable, auxiliary power units and propellers.</td>
</tr>
<tr>
<td>1.1.2</td>
<td>The name and address of the owner, operator or M.A Subpart G approved organisation managing the aircraft airworthiness.</td>
</tr>
<tr>
<td>1.1.3</td>
<td>The reference, the date of issue and issue number of the approved maintenance programme.</td>
</tr>
<tr>
<td>1.1.4</td>
<td>A statement signed by the owner, operator or M.A Subpart G approved organisation managing the aircraft airworthiness to the effect that the specified aircraft will be maintained to the programme and that the programme will be reviewed and updated as required.</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Contents/list of effective pages and their revision status of the document.</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Check periods, which reflect the anticipated utilization of the aircraft. Such utilization should be stated and include a tolerance of not more than 25%. Where utilization cannot be anticipated, calendar time limits should also be included.</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Procedures for the escalation of established check periods, where applicable and acceptable to the competent authority of registry.</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Provision to record the date and reference of approved amendments incorporated in the maintenance programme.</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Details of pre-flight maintenance tasks that are accomplished by maintenance staff.</td>
</tr>
<tr>
<td>1.1.10</td>
<td>The tasks and the periods (intervals/frequencies) at which each part of the aircraft, engines, APU’s, propellers, components, accessories, equipment, instruments, electrical and radio apparatus, together with the associated systems and installations should be inspected. This should include the type and degree of inspection required.</td>
</tr>
<tr>
<td>1.1.11</td>
<td>The periods at which components should be checked, cleaned, lubricated, replenished, adjusted and tested.</td>
</tr>
<tr>
<td>1.1.12</td>
<td>If applicable details of ageing aircraft system requirements together with any specified sampling programmes.</td>
</tr>
<tr>
<td>1.1.13</td>
<td>If applicable details of specific structural maintenance programmes where issued by the type certificate holder including but not limited to:</td>
</tr>
<tr>
<td>a.</td>
<td>Maintenance of structural Integrity by damage Tolerance and Supplemental Structural Inspection Programmes (SSID).</td>
</tr>
<tr>
<td>b.</td>
<td>Structural maintenance programmes resulting from the SB review performed by the TC holder</td>
</tr>
<tr>
<td>c.</td>
<td>Corrosion prevention and control.</td>
</tr>
<tr>
<td>d.</td>
<td>Repair Assessment.</td>
</tr>
</tbody>
</table>
e. Widespread Fatigue Damage

1.1.15. If applicable a statement of the limit of validity in terms of total flight cycles/calendar date/flight hours for the structural programme in 1.1.13.

1.1.16. The periods at which overhauls and/or replacements by new or overhauled components should be made.

1.1.17. A cross-reference to other documents approved by the Agency which contain the details of maintenance tasks related to mandatory life limitations, Certification Maintenance Requirements (CMR’s) and AD’s. Note: To prevent inadvertent variations to such tasks or intervals these items should not be included in the main portion of the maintenance programme document, or any planning control system, without specific identification of their mandatory status.

1.1.18. Details of, or cross-reference to, any required reliability programme or statistical methods of continuous Surveillance.

1.1.19. A statement that practices and procedures to satisfy the programme should be to the standards specified in the TC holder’s Maintenance Instructions. In the case of approved practices and procedures that differ, the statement should refer to them.

1.1.20. Each maintenance task quoted should be defined in a definition section of the programme.

2 Programme basis

2.1. An owner or an M.A Subpart G approved organisation’s aircraft maintenance programme should normally be based upon the MRB report, where applicable, and the TC holder’s maintenance planning document or Chapter 5 of the maintenance manual, (i.e. the manufacturer’s recommended maintenance programme). The structure and format of these maintenance recommendations may be re-written by the owner or the M.A Subpart G approved organisation to better suit the operation and control of the particular maintenance programme.

2.2. For a newly type-certificated aircraft where no previously approved maintenance programme exists, it will be necessary for the owner or the M.A Subpart G approved organisation to comprehensively appraise the manufacturer’s recommendations (and the MRB report where applicable), together with other airworthiness information, in order to produce a realistic programme for approval.

2.3. For existing aircraft types it is permissible for the operator to make comparisons with maintenance programmes previously approved. It should not be assumed that a programme approved for one owner or the M.A Subpart G approved organisation would automatically be approved for another. Evaluation should be made of the aircraft/fleet utilization, landing rate, equipment fit and, in particular, the experience of the owner or the M.A Subpart G approved organisation when assessing an existing programme. Where the competent authority is not satisfied that the proposed maintenance programme can be used as is, the competent authority should request appropriate changes such as additional maintenance tasks or de-escalation of check frequencies as necessary.

2.4. Critical Design Configuration Control Limitations (CDCCL)
If CDCCL have been identified for the aircraft type by the TC/STC holder, maintenance instructions should be developed. CDCCL’s are characterized by features in an aircraft installation or component that should be retained during modification, change, repair, or scheduled maintenance for the operational life of the aircraft or applicable component or part. (ED Decision 2007/001/R-13/03/2007)

3 Amendments
Amendments (revisions) to the approved maintenance programme should be made by the owner or the M.A Subpart G approved organisation, to reflect changes in the TC holder’s recommendations, modifications, service experience, or as required by the competent authority.

4 Permitted variations to maintenance periods

The owner or the M.A Subpart G approved organisation may only vary the periods prescribed by the programme with the approval of the competent authority or through a procedure developed in the maintenance programme and approved by the competent authority.

5 Periodic review of maintenance programme contents

5.1 The owner or the M.A Subpart G approved organisation's approved maintenance programmes should be subject to periodic review to ensure that they reflect current TC holder’s recommendations, revisions to the MRB report if applicable, mandatory requirements and the maintenance needs of the aircraft.

5.2 The owner or the M.A Subpart G approved organisation should review the detailed requirements at least annually for continued validity in the light of operating experience.

6 Reliability Programmes

6.1 Applicability

6.1.1 A reliability programme should be developed in the following cases:
(a) the aircraft maintenance programme is based upon MSG-3 logic
(b) the aircraft maintenance programme includes condition monitored components
(c) the aircraft maintenance programme does not contain overhaul time periods for all significant system components
(d) when specified by the Manufacturer’s maintenance planning document or MRB.

6.1.2 A reliability Programme need not be developed in the following cases:
(a) the maintenance programme is based upon the MSG-1 or 2 logic but only contains hard time or on condition items
(b) the aircraft is not a large aircraft according to Part-M
(c) the aircraft maintenance programme provides overhaul time periods for all significant system components. Note: for the purpose of this paragraph, a significant system is a system the failure of which could hazard the aircraft safety.

6.1.3 Notwithstanding paragraphs 6.1.1 and 6.1.2 above, an M.A.Subpart G organisation may however, develop its own reliability monitoring programme when it may be deemed beneficial from a maintenance planning point of view.

6.2 Applicability for M.A.Subpart G organisation/operator of small fleets of aircraft

6.2.1 For the purpose of this paragraph, a small fleet of aircraft is a fleet of less than 6 aircraft of the same type.

6.2.2 The requirement for a reliability programme is irrespective of the M.A.Subpart G organisation’s fleet size.

6.2.3 Complex reliability programmes could be inappropriate for a small fleet. It is recommended that such M.A.Subpart G organizations tailor their reliability programmes to suit the size and complexity of operation.

6.2.4 One difficulty with a small fleet of aircraft consists in the amount of available data which can be processed: when this amount is too low, the calculation of alert level is very coarse. Therefore “alert levels” should be used carefully.

6.2.5 An M.A.Subpart G organisation of a small fleet of aircraft, when establishing a reliability programme, should consider the following:
(a) The programme should focus on areas where a sufficient amount of data is likely to be processed.
(b) When the amount of available data is very limited, the M.A.Subpart G organisation’s engineering judgment is then a vital element. In the following examples, careful engineering analysis should be exercised before taking decisions:

A “0” rate in the statistical calculation may possibly simply reveal that enough statistical data is missing, rather that there is no potential problem.
When alert levels are used, a single event may have the figures reach the alert level. Engineering judgement is necessary so as to discriminate an artefact from an actual need for a corrective action.

In making his engineering judgement, an M.A.Subpart G organisation is encouraged to establish contact and make comparisons with other M.A.Subpart G organisations of the same aircraft, where possible and relevant. Making comparison with data provided by the manufacturer may also be possible.

6.2.6 In order to obtain accurate reliability data, it should be recommended to pool data and analysis with one or more other M.A.Subpart G organisation(s). Paragraph 6.6 of this paragraph specifies under which conditions it is acceptable that M.A.Subpart G organisations share reliability data.

6.2.7 Notwithstanding the above there are cases where the M.A.Subpart G organisation will be unable to pool data with other M.A.Subpart G organisation, e.g. at the introduction to service of a new type. In that case the competent authority should impose additional restrictions on the MRB/MPD tasks intervals (e.g. no variations or only minor evolution are possible, and with the competent authority approval).

6.3 Engineering judgement

6.3.1 Engineering judgement is itself inherent to reliability programmes as no interpretation of data is possible without judgement. In approving the M.A.Subpart G organisation’s maintenance and reliability programmes, the competent authority is expected to ensure that the organisation which runs the programme (it may be the M.A.Subpart G organisation, or an Part-145 organisation under contract) hires sufficiently qualified personnel with appropriate engineering experience and understanding of reliability concept (see AMC M.A.706).

6.3.2 It follows that failure to provide appropriately qualified personnel for the reliability programme may lead the competent authority to reject the approval of the reliability programme and therefore the aircraft maintenance programme.

6.4 Contracted maintenance

6.4.1 Whereas M.A.302 specifies that, the aircraft maintenance programme -which includes the associated reliability programme-, should be managed and presented by the M.A.Subpart G organisation to the competent authority, it is understood that the M.A.Subpart G organisation may delegate certain functions to the Part-145 organisation under contract, provided this organisation proves to have the appropriate expertise.

6.4.2 These functions are:
 (a) Developing the aircraft maintenance and reliability programmes,
 (b) Performing the collection and analysis of the reliability data,
 (c) Providing reliability reports, and
 (d) Proposing corrective actions to the M.A.Subpart G organisation.

6.4.3 Notwithstanding the above decision to implement a corrective action (or the decision to request from the competent authority the approval to implement a corrective action) remains the M.A.Subpart G organisation’s prerogative and responsibility. In relation to paragraph 6.4.2(d) above, a decision not to implement a corrective action should be justified and documented.

6.4.4 The arrangement between the M.A.Subpart G organisation and the Part-145 organisation should be specified in the maintenance contract (see appendix 11) and the relevant CAME, and MOE procedures.

6.5 Reliability programme

In preparing the programme details, account should be taken of this paragraph. All associated procedures should be clearly defined.

6.5.1 Objectives

6.5.1.1 A statement should be included summarising as precisely as possible the prime objectives of the programme. To the minimum it should include the following:
 (a) to recognise the need for corrective action,
 (b) to establish what corrective action is needed and,
 (c) to determine the effectiveness of that action.

6.5.1.2 The extent of the objectives should be directly related to the scope of the
programme. Its scope could vary from a component defect monitoring system for a small M.A.Subpart G organisation, to an integrated maintenance management programme for a big M.A.Subpart G organisation. The manufacturer’s maintenance planning documents may give guidance on the objectives and should be consulted in every case.

6.5.1.3 In case of a MSG-3 based maintenance programme, the reliability programme should provide a monitor that all MSG-3 related tasks from the maintenance programme are effective and their periodicity is adequate.

6.5.2 Identification of items. The items controlled by the programme should be stated, e.g. by ATA Chapters. Where some items (e.g. aircraft structure, engines, APU) are controlled by separate programmes, the associated procedures (e.g. individual sampling or life development programmes, constructor’s structure sampling programmes) should be cross referenced in the programme.

6.5.3 Terms and definitions. The significant terms and definitions applicable to the Programme should be clearly identified. Terms are already defined in MSG-3, Part-145 and Part-M.

6.5.4 Information sources and collection.

6.5.4.1 Sources of information should be listed and procedures for the transmission of information from the sources, together with the procedure for collecting and receiving it, should be set out in detail in the CAME or MOE as appropriate.

6.5.4.2 The type of information to be collected should be related to the objectives of the Programme and should be such that it enables both an overall broad based assessment of the information to be made and also allow for assessments to be made as to whether any reaction, both to trends and to individual events, is necessary. The following are examples of the normal prime sources:

(a) Pilots Reports.
(b) Technical Logs.
(c) Aircraft Maintenance Access Terminal / On-board Maintenance System readouts.
(d) Maintenance Worksheets.
(e) Workshop Reports.
(f) Reports on Functional Checks.
(h) Reports on Special Inspections
(g) Stores Issues/Reports.
(i) Air Safety Reports.
(j) Reports on Technical Delays and Incidents.
(k) Other sources: ETOPS, RVSM, CAT II/III.

6.5.4.3 In addition to the normal prime sources of information, due account should be taken of continuing airworthiness and safety information promulgated under Part-21

6.5.5 Display of information. Collected information may be displayed graphically or in a tabular format or a combination of both. The rules governing any separation or discarding of information prior to incorporation into these formats should be stated. The format should be such that the identification of trends, specific highlights and related events would be readily apparent.

6.5.5.1 The above display of information should include provisions for “nil returns” to aid the examination of the total information.

6.5.5.2 Where “standards” or “alert levels” are included in the programme, the display of information should be oriented accordingly.

6.5.6 Examination, analysis and interpretation of the information. The method employed for examining, analysing and interpreting the programme information should be explained.

6.5.6.1 Examination. Methods of examination of information may be varied according to the content and quantity of information of individual programmes. These can range from examination of the initial indication of performance variations to formalised detailed procedures at specific periods, and the methods should be fully...
6.5.6.2 Analysis and Interpretation.
The procedures for analysis and interpretation of information should be such as to enable the performance of the items controlled by the programme to be measured; they should also facilitate recognition, diagnosis and recording of significant problems. The whole process should be such as to enable a critical assessment to be made of the effectiveness of the programme as a total activity. Such a process may involve:

(a) Comparisons of operational reliability with established or allocated standards (in the initial period these could be obtained from in-service experience of similar equipment of aircraft types).
(b) Analysis and interpretation of trends.
(c) The evaluation of repetitive defects.
(d) Confidence testing of expected and achieved results.
(e) Studies of life-bands and survival characteristics.
(f) Reliability predictions.
(g) Other methods of assessment.

6.5.6.3 The range and depth of engineering analysis and interpretation should be related to the particular programme and to the facilities available. The following, at least, should be taken into account:

(a) Flight defects and reductions in operational reliability.
(b) Defects occurring on-line and at main base.
(c) Deterioration observed during routine maintenance.
(d) Workshop and overhaul facility findings.
(e) Modification evaluations.
(f) Sampling programmes.
(g) The adequacy of maintenance equipment and publications.
(h) The effectiveness of maintenance procedures.
(i) Staff training.
(j) Service bulletins, technical instructions, etc.

6.5.6.4 Where the M.A.Subpart G organisation relies upon contracted maintenance and/or overhaul facilities as an information input to the programme, the arrangements for availability and continuity of such information should be established and details should be included.

6.5.7 Corrective Actions.

6.5.7.1 The procedures and time scales both for implementing corrective actions and for monitoring the effects of corrective actions should be fully described. Corrective actions shall correct any reduction in reliability revealed by the programme and could take the form of:

(a) Changes to maintenance, operational procedures or techniques.
(b) Maintenance changes involving inspection frequency and content, function checks, overhaul requirements and time limits, which will require amendment of the scheduled maintenance periods or tasks in the approved maintenance programme. This may include escalation or de-escalation of tasks, addition, modification or deletion of tasks.
(c) Amendments to approved manuals (e.g. maintenance manual, crew manual).
(d) Initiation of modifications.
(e) Special inspections of fleet campaigns.
(f) Spares provisioning.
(g) Staff training.
(h) Manpower and equipment planning.

Note: Some of the above corrective actions may need the competent authority’s approval before implementation.

6.5.7.2 The procedures for effecting changes to the maintenance programme should be described, and the associated documentation should include a planned completion date for each corrective action, where applicable.

6.5.8 Organizational Responsibilities.
The organisational structure and the department responsible for the
administration of the programme should be stated. The chains of responsibility for individuals and departments (Engineering, Production, Quality, Operations etc.) in respect of the programme, together with the information and functions of any programme control committees (reliability group), should be defined. Participation of the competent authority should be stated. This information should be contained in the CAME or MOE as appropriate.

6.5.9 Presentation of information to the competent authority.

The following information should be submitted to the competent authority for approval as part of the reliability programme:

(a) The format and content of routine reports.
(b) The time scales for the production of reports together with their distribution.
(c) The format and content of reports supporting request for increases in periods between maintenance (escalation) and for amendments to the approved maintenance programme. These reports should contain sufficient detailed information to enable the competent authority to make its own evaluation where necessary.

6.5.10 Evaluation and review.

Each programme should describe the procedures and individual responsibilities in respect of continuous monitoring of the effectiveness of the programme as a whole.

The time periods and the procedures for both routine and non-routine reviews of maintenance control should be detailed (progressive, monthly, quarterly, or annual reviews, procedures following reliability “standards” or “alert levels” being exceeded, etc.).

6.5.10.1 Each Programme should contain procedures for monitoring and, as necessary, revising the reliability “standards” or “alert levels”. The organisational responsibilities for monitoring and revising the “standards” should be specified together with associated time scales.

6.5.10.2 Although not exclusive, the following list gives guidance on the criteria to be taken into account during the review.

(a) Utilisation (high/low/seasonal).
(b) Fleet commonality.
(c) Alert Level adjustment criteria.
(d) Adequacy of data.
(e) Reliability procedure audit.
(f) Staff training.
(g) Operational and maintenance procedures.

6.5.11 Approval of maintenance programme amendment

The competent authority may authorise the M.A.Subpart G organisation to implement in the maintenance programme changes arising from the reliability programme results prior to their formal approval by the authority when satisfied that:

(a) the Reliability Programme monitors the content of the Maintenance Programme in a comprehensive manner, and
(b) the procedures associated with the functioning of the “Reliability Group” provide the assurance that appropriate control is exercised by the Owner/operator over the internal validation of such changes.

6.6 Pooling Arrangements.

In some cases, in order that sufficient data may be analysed it may be desirable to “pool” data: i.e. collate data from a number of M.A.Subpart G organisations of the same type of aircraft. For the analysis to be valid, the aircraft concerned, mode of operation, and maintenance procedures applied must be substantially the same:

Variations in utilisation between two M.A.Subpart G organisations may more than anything, fundamentally corrupt the analysis. Although not exhaustive the following list gives guidance on the primary factors which need to be taken into account.

(a) Certification factors, such as: aircraft TCDS compliance (variant) / modification status, including SB compliance.
<table>
<thead>
<tr>
<th>MP reference</th>
<th>Content of the maintenance programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>Operational Factors, such as: operational environment / utilisation, e.g. low/high/seasonal etc / respective fleet size operating rules applicable (e.g. ETOPS/RVSM/All Weather etc.) / operating procedures / MEL and MEL utilisation</td>
</tr>
<tr>
<td>(c)</td>
<td>Maintenance factors, such as: aircraft age maintenance procedures; maintenance standards applicable; lubrication procedures and programme; MPD revision or escalation applied or maintenance programme applicable.</td>
</tr>
</tbody>
</table>

6.6.2 Although it may not be necessary for all of the foregoing to be completely common, it is necessary for a substantial amount of commonality to prevail. Decision should be taken by the competent authority on a case by case basis.

6.6.3 In case of a short term lease agreement (less than 6 month) more flexibility against the para 6.6.1 criteria may be granted by the competent authority, so as to allow the owner/operator to operate the aircraft under the same programme during the lease agreement effectivity.

6.6.4 Changes by any one of the M.A.Subpart G organisation to the above, requires assessment in order that the pooling benefits can be maintained. Where an M.A.Subpart G organisation wishes to pool data in this way, the approval of the competent authority should be sought prior to any formal agreement being signed between M.A.Subpart G organisations.

6.6.5 Whereas this paragraph 6.6 is intended to address the pooling of data directly between M.A.Subpart G organisations, it is acceptable that the M.A.Subpart G organisation participates in a reliability programme managed by the aircraft manufacturer, when the competent authority is satisfied that the manufacturer manages a reliability programme which complies with the intent of this paragraph.
FDR/CVR readout

<table>
<thead>
<tr>
<th>Aircraft maintenance programme revision:</th>
<th>Check that all specified is described in CAME and/or aircraft maintenance programme, as appropriate.</th>
</tr>
</thead>
</table>

Remarks:

3. Preservation of Flight Recorder records

An operator shall ensure, to the extent possible, in the event the aeroplane becomes involved in an accident or incident, the preservation of all related flight recorder records and, if necessary, the associated flight recorders, and their retention in safe custody pending their disposition as determined in accordance with ICAO Annex 13.

4. Flight Recorder documentation

Documentation concerning parameter allocation, conversion equations, periodic calibration and other serviceability/maintenance information should be maintained by the operator.

The documentation must be sufficient to ensure that accident investigation authorities have the necessary information to read out the data in engineering units.
5. Guidance material for FDR/CVR inspections

1. Prior to the first flight of the day, the built-in test features on the flight deck for the CVR, FDR and Flight Data Acquisition Unit (FDAU), when installed, should be monitored.

2. Annual inspections should be carried out as follows:

 Note: If the FDR equipment employs Solid State technology, and if operator continually performs Flight Data Monitoring of aircraft parameters, then the annual readout requirement is extended to biannual interval.

 a) the read-out of the recorded data from the FDR and CVR should ensure that the recorder operates correctly for the nominal duration of the recording;

 b) the analysis of the FDR should evaluate the quality of the recorded data to determine if the bit error rate is within acceptable limits and to determine the nature and distribution of the errors;

 c) a complete flight from the FDR should be examined in engineering units to evaluate the validity of all recorded parameters. Particular attention should be given to parameters from sensors dedicated to the FDR. Parameters taken from the aircraft’s electrical bus system need not be checked if their serviceability can be detected by other aircraft systems;

 d) the read-out facility should have the necessary software to accurately convert the recorded values to engineering units and to determine the status of discrete signals;

 e) an annual examination of the recorded signal on the CVR should be carried out by re-play of the CVR recording. While installed in the aircraft, the CVR should record test signals from each aircraft source and from relevant external sources to ensure that all required signals meet intelligibility standards; and

 f) where practicable, during the annual examination, a sample of in-flight recordings of the CVR should be examined for evidence that the intelligibility of the signal is acceptable.

Flight recorder systems should be considered unserviceable if there is a significant period of poor quality data, unintelligible signals, or if one or more of the mandatory parameters is not recorded correctly.

A report of the annual/biannual inspection should be made available on request to the State’s regulatory authority for monitoring purposes.

6. Calibration of the FDR system

 a) the FDR system should be re-calibrated at least every five years to determine any discrepancies in the engineering conversion routines for the mandatory parameters, and to ensure that parameters are being recorded within the calibration tolerances; and

 b) when the parameters of altitude and airspeed are provided by sensors that are dedicated to the FDR system, there should be a re-calibration performed as recommended by the sensor manufacturer, or at least every two years.

7. CAA REQUIRED ITEMS (M.A.302. (d))

 MP reference
Place and date:____________________

Name and surname___________________

Signature:__________________________